kineticTheoryModel.C
Go to the documentation of this file.
1 /*---------------------------------------------------------------------------*\
2  ========= |
3  \\ / F ield | OpenFOAM: The Open Source CFD Toolbox
4  \\ / O peration |
5  \\ / A nd | www.openfoam.com
6  \\/ M anipulation |
7 -------------------------------------------------------------------------------
8  Copyright (C) 2011-2016 OpenFOAM Foundation
9  Copyright (C) 2019-2020 OpenCFD Ltd.
10 -------------------------------------------------------------------------------
11 License
12  This file is part of OpenFOAM.
13 
14  OpenFOAM is free software: you can redistribute it and/or modify it
15  under the terms of the GNU General Public License as published by
16  the Free Software Foundation, either version 3 of the License, or
17  (at your option) any later version.
18 
19  OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
20  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
21  FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
22  for more details.
23 
24  You should have received a copy of the GNU General Public License
25  along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
26 
27 \*---------------------------------------------------------------------------*/
28 
29 #include "kineticTheoryModel.H"
30 #include "mathematicalConstants.H"
31 #include "twoPhaseSystem.H"
32 #include "fvOptions.H"
33 
34 // * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * //
35 
36 Foam::RASModels::kineticTheoryModel::kineticTheoryModel
37 (
38  const volScalarField& alpha,
39  const volScalarField& rho,
40  const volVectorField& U,
41  const surfaceScalarField& alphaRhoPhi,
42  const surfaceScalarField& phi,
43  const transportModel& phase,
44  const word& propertiesName,
45  const word& type
46 )
47 :
48  eddyViscosity
49  <
51  >
52  (
53  type,
54  alpha,
55  rho,
56  U,
57  alphaRhoPhi,
58  phi,
59  phase,
60  propertiesName
61  ),
62 
63  phase_(phase),
64 
65  viscosityModel_
66  (
67  kineticTheoryModels::viscosityModel::New
68  (
69  coeffDict_
70  )
71  ),
72  conductivityModel_
73  (
74  kineticTheoryModels::conductivityModel::New
75  (
76  coeffDict_
77  )
78  ),
79  radialModel_
80  (
81  kineticTheoryModels::radialModel::New
82  (
83  coeffDict_
84  )
85  ),
86  granularPressureModel_
87  (
88  kineticTheoryModels::granularPressureModel::New
89  (
90  coeffDict_
91  )
92  ),
93  frictionalStressModel_
94  (
95  kineticTheoryModels::frictionalStressModel::New
96  (
97  coeffDict_
98  )
99  ),
100 
101  equilibrium_(coeffDict_.get<bool>("equilibrium")),
102  e_("e", dimless, coeffDict_),
103  alphaMax_("alphaMax", dimless, coeffDict_),
104  alphaMinFriction_("alphaMinFriction", dimless, coeffDict_),
105  residualAlpha_("residualAlpha", dimless, coeffDict_),
106  maxNut_("maxNut", dimViscosity, 1000, coeffDict_),
107 
108  Theta_
109  (
110  IOobject
111  (
112  IOobject::groupName("Theta", phase.name()),
113  U.time().timeName(),
114  U.mesh(),
115  IOobject::MUST_READ,
116  IOobject::AUTO_WRITE
117  ),
118  U.mesh()
119  ),
120 
121  lambda_
122  (
123  IOobject
124  (
125  IOobject::groupName("lambda", phase.name()),
126  U.time().timeName(),
127  U.mesh(),
128  IOobject::NO_READ,
129  IOobject::NO_WRITE
130  ),
131  U.mesh(),
133  ),
134 
135  gs0_
136  (
137  IOobject
138  (
139  IOobject::groupName("gs0", phase.name()),
140  U.time().timeName(),
141  U.mesh(),
142  IOobject::NO_READ,
143  IOobject::NO_WRITE
144  ),
145  U.mesh(),
147  ),
148 
149  kappa_
150  (
151  IOobject
152  (
153  IOobject::groupName("kappa", phase.name()),
154  U.time().timeName(),
155  U.mesh(),
156  IOobject::NO_READ,
157  IOobject::NO_WRITE
158  ),
159  U.mesh(),
160  dimensionedScalar(dimensionSet(1, -1, -1, 0, 0), Zero)
161  ),
162 
163  nuFric_
164  (
165  IOobject
166  (
167  IOobject::groupName("nuFric", phase.name()),
168  U.time().timeName(),
169  U.mesh(),
170  IOobject::NO_READ,
171  IOobject::AUTO_WRITE
172  ),
173  U.mesh(),
175  )
176 {
177  if (type == typeName)
178  {
179  printCoeffs(type);
180  }
181 }
182 
183 
184 // * * * * * * * * * * * * * * * * Destructor * * * * * * * * * * * * * * * //
185 
187 {}
188 
189 
190 // * * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * //
191 
193 {
194  if
195  (
196  eddyViscosity
197  <
198  RASModel<EddyDiffusivity<phaseCompressibleTurbulenceModel>>
199  >::read()
200  )
201  {
202  coeffDict().readEntry("equilibrium", equilibrium_);
203  e_.readIfPresent(coeffDict());
204  alphaMax_.readIfPresent(coeffDict());
205  alphaMinFriction_.readIfPresent(coeffDict());
206 
207  viscosityModel_->read();
208  conductivityModel_->read();
209  radialModel_->read();
210  granularPressureModel_->read();
211  frictionalStressModel_->read();
212 
213  return true;
214  }
215 
216  return false;
217 }
218 
219 
222 {
224  return nut_;
225 }
226 
227 
230 {
232  return nut_;
233 }
234 
235 
238 {
240  return nullptr;
241 }
242 
243 
246 {
247  return tmp<volSymmTensorField>
248  (
250  (
251  IOobject
252  (
253  IOobject::groupName("R", U_.group()),
254  runTime_.timeName(),
255  mesh_,
258  ),
259  - (nut_)*dev(twoSymm(fvc::grad(U_)))
260  - (lambda_*fvc::div(phi_))*symmTensor::I
261  )
262  );
263 }
264 
265 
268 {
269  const volScalarField& rho = phase_.rho();
270 
271  tmp<volScalarField> tpPrime
272  (
273  Theta_
274  *granularPressureModel_->granularPressureCoeffPrime
275  (
276  alpha_,
277  radialModel_->g0(alpha_, alphaMinFriction_, alphaMax_),
278  radialModel_->g0prime(alpha_, alphaMinFriction_, alphaMax_),
279  rho,
280  e_
281  )
282  + frictionalStressModel_->frictionalPressurePrime
283  (
284  phase_,
285  alphaMinFriction_,
286  alphaMax_
287  )
288  );
289 
290  volScalarField::Boundary& bpPrime =
291  tpPrime.ref().boundaryFieldRef();
292 
293  forAll(bpPrime, patchi)
294  {
295  if (!bpPrime[patchi].coupled())
296  {
297  bpPrime[patchi] == 0;
298  }
299  }
300 
301  return tpPrime;
302 }
303 
304 
307 {
308  return fvc::interpolate(pPrime());
309 }
310 
311 
314 {
315  return devRhoReff(U_);
316 }
317 
318 
321 (
322  const volVectorField& U
323 ) const
324 {
325  return tmp<volSymmTensorField>
326  (
328  (
329  IOobject
330  (
331  IOobject::groupName("devRhoReff", U.group()),
332  runTime_.timeName(),
333  mesh_,
336  ),
337  - (rho_*nut_)
338  *dev(twoSymm(fvc::grad(U)))
339  - ((rho_*lambda_)*fvc::div(phi_))*symmTensor::I
340  )
341  );
342 }
343 
344 
347 (
349 ) const
350 {
351  return
352  (
353  - fvm::laplacian(rho_*nut_, U)
354  - fvc::div
355  (
356  (rho_*nut_)*dev2(T(fvc::grad(U)))
357  + ((rho_*lambda_)*fvc::div(phi_))
358  *dimensioned<symmTensor>("I", dimless, symmTensor::I)
359  )
360  );
361 }
362 
363 
365 {
366  // Local references
367  const twoPhaseSystem& fluid = refCast<const twoPhaseSystem>(phase_.fluid());
368  volScalarField alpha(max(alpha_, scalar(0)));
369  const volScalarField& rho = phase_.rho();
370  const surfaceScalarField& alphaRhoPhi = alphaRhoPhi_;
371  const volVectorField& U = U_;
372  const volVectorField& Uc_ = fluid.otherPhase(phase_).U();
373 
374  const scalar sqrtPi = sqrt(constant::mathematical::pi);
375  dimensionedScalar ThetaSmall("ThetaSmall", Theta_.dimensions(), 1.0e-6);
376  dimensionedScalar ThetaSmallSqrt(sqrt(ThetaSmall));
377 
378  tmp<volScalarField> tda(phase_.d());
379  const volScalarField& da = tda();
380 
381  tmp<volTensorField> tgradU(fvc::grad(U_));
382  const volTensorField& gradU(tgradU());
383  volSymmTensorField D(symm(gradU));
384 
385  // Calculating the radial distribution function
386  gs0_ = radialModel_->g0(alpha, alphaMinFriction_, alphaMax_);
387 
388  if (!equilibrium_)
389  {
390  // Particle viscosity (Table 3.2, p.47)
391  nut_ = viscosityModel_->nu(alpha, Theta_, gs0_, rho, da, e_);
392 
393  volScalarField ThetaSqrt("sqrtTheta", sqrt(Theta_));
394 
395  // Bulk viscosity p. 45 (Lun et al. 1984).
396  lambda_ = (4.0/3.0)*sqr(alpha)*da*gs0_*(1.0 + e_)*ThetaSqrt/sqrtPi;
397 
398  // Stress tensor, Definitions, Table 3.1, p. 43
400  (
401  rho*(2.0*nut_*D + (lambda_ - (2.0/3.0)*nut_)*tr(D)*I)
402  );
403 
404  // Dissipation (Eq. 3.24, p.50)
405  volScalarField gammaCoeff
406  (
407  "gammaCoeff",
408  12.0*(1.0 - sqr(e_))
409  *max(sqr(alpha), residualAlpha_)
410  *rho*gs0_*(1.0/da)*ThetaSqrt/sqrtPi
411  );
412 
413  // Drag
415  (
416  fluid.lookupSubModel<dragModel>
417  (
418  phase_,
419  fluid.otherPhase(phase_)
420  ).K()
421  );
422 
423  // Eq. 3.25, p. 50 Js = J1 - J2
424  volScalarField J1("J1", 3.0*beta);
425  volScalarField J2
426  (
427  "J2",
428  0.25*sqr(beta)*da*magSqr(U - Uc_)
429  /(
430  max(alpha, residualAlpha_)*rho
431  *sqrtPi*(ThetaSqrt + ThetaSmallSqrt)
432  )
433  );
434 
435  // particle pressure - coefficient in front of Theta (Eq. 3.22, p. 45)
436  volScalarField PsCoeff
437  (
438  granularPressureModel_->granularPressureCoeff
439  (
440  alpha,
441  gs0_,
442  rho,
443  e_
444  )
445  );
446 
447  // 'thermal' conductivity (Table 3.3, p. 49)
448  kappa_ = conductivityModel_->kappa(alpha, Theta_, gs0_, rho, da, e_);
449 
450  fv::options& fvOptions(fv::options::New(mesh_));
451 
452  // Construct the granular temperature equation (Eq. 3.20, p. 44)
453  // NB. note that there are two typos in Eq. 3.20:
454  // Ps should be without grad
455  // the laplacian has the wrong sign
456  fvScalarMatrix ThetaEqn
457  (
458  1.5*
459  (
460  fvm::ddt(alpha, rho, Theta_)
461  + fvm::div(alphaRhoPhi, Theta_)
462  - fvc::Sp(fvc::ddt(alpha, rho) + fvc::div(alphaRhoPhi), Theta_)
463  )
464  - fvm::laplacian(kappa_, Theta_, "laplacian(kappa,Theta)")
465  ==
466  - fvm::SuSp((PsCoeff*I) && gradU, Theta_)
467  + (tau && gradU)
468  + fvm::Sp(-gammaCoeff, Theta_)
469  + fvm::Sp(-J1, Theta_)
470  + fvm::Sp(J2/(Theta_ + ThetaSmall), Theta_)
471  + fvOptions(alpha, rho, Theta_)
472  );
473 
474  ThetaEqn.relax();
475  fvOptions.constrain(ThetaEqn);
476  ThetaEqn.solve();
477  fvOptions.correct(Theta_);
478  }
479  else
480  {
481  // Equilibrium => dissipation == production
482  // Eq. 4.14, p.82
483  volScalarField K1("K1", 2.0*(1.0 + e_)*rho*gs0_);
485  (
486  "K3",
487  0.5*da*rho*
488  (
489  (sqrtPi/(3.0*(3.0 - e_)))
490  *(1.0 + 0.4*(1.0 + e_)*(3.0*e_ - 1.0)*alpha*gs0_)
491  +1.6*alpha*gs0_*(1.0 + e_)/sqrtPi
492  )
493  );
494 
496  (
497  "K2",
498  4.0*da*rho*(1.0 + e_)*alpha*gs0_/(3.0*sqrtPi) - 2.0*K3/3.0
499  );
500 
501  volScalarField K4("K4", 12.0*(1.0 - sqr(e_))*rho*gs0_/(da*sqrtPi));
502 
503  volScalarField trD
504  (
505  "trD",
506  alpha/(alpha + residualAlpha_)
507  *fvc::div(phi_)
508  );
509  volScalarField tr2D("tr2D", sqr(trD));
510  volScalarField trD2("trD2", tr(D & D));
511 
512  volScalarField t1("t1", K1*alpha + rho);
513  volScalarField l1("l1", -t1*trD);
514  volScalarField l2("l2", sqr(t1)*tr2D);
515  volScalarField l3
516  (
517  "l3",
518  4.0
519  *K4
520  *alpha
521  *(2.0*K3*trD2 + K2*tr2D)
522  );
523 
524  Theta_ = sqr
525  (
526  (l1 + sqrt(l2 + l3))
527  /(2.0*max(alpha, residualAlpha_)*K4)
528  );
529 
530  kappa_ = conductivityModel_->kappa(alpha, Theta_, gs0_, rho, da, e_);
531  }
532 
533  Theta_.max(0);
534  Theta_.min(100);
535 
536  {
537  // particle viscosity (Table 3.2, p.47)
538  nut_ = viscosityModel_->nu(alpha, Theta_, gs0_, rho, da, e_);
539 
540  volScalarField ThetaSqrt("sqrtTheta", sqrt(Theta_));
541 
542  // Bulk viscosity p. 45 (Lun et al. 1984).
543  lambda_ = (4.0/3.0)*sqr(alpha)*da*gs0_*(1.0 + e_)*ThetaSqrt/sqrtPi;
544 
545  // Frictional pressure
546  volScalarField pf
547  (
548  frictionalStressModel_->frictionalPressure
549  (
550  phase_,
551  alphaMinFriction_,
552  alphaMax_
553  )
554  );
555 
556  nuFric_ = frictionalStressModel_->nu
557  (
558  phase_,
559  alphaMinFriction_,
560  alphaMax_,
561  pf/rho,
562  D
563  );
564 
565  // Limit viscosity and add frictional viscosity
566  nut_.min(maxNut_);
567  nuFric_ = min(nuFric_, maxNut_ - nut_);
568  nut_ += nuFric_;
569  }
570 
571  if (debug)
572  {
573  Info<< typeName << ':' << nl
574  << " max(Theta) = " << max(Theta_).value() << nl
575  << " max(nut) = " << max(nut_).value() << endl;
576  }
577 }
578 
579 
580 // ************************************************************************* //
Foam::expressions::patchExpr::debug
int debug
Foam::IOobject::NO_WRITE
@ NO_WRITE
Definition: IOobject.H:191
Foam::volTensorField
GeometricField< tensor, fvPatchField, volMesh > volTensorField
Definition: volFieldsFwd.H:62
Foam::RASModels::kineticTheoryModel::read
virtual bool read()
Definition: kineticTheoryModel.C:185
Foam::symm
dimensionedSymmTensor symm(const dimensionedSymmTensor &dt)
Definition: dimensionedSymmTensor.C:77
mathematicalConstants.H
Foam::fvc::grad
tmp< GeometricField< typename outerProduct< vector, Type >::type, fvPatchField, volMesh >> grad(const GeometricField< Type, fvsPatchField, surfaceMesh > &ssf)
Definition: fvcGrad.C:47
fvOptions.H
K1
#define K1
Definition: SHA1.C:143
Foam::tmp
A class for managing temporary objects.
Definition: PtrList.H:57
Foam::RASModels::kineticTheoryModel::k
virtual tmp< volScalarField > k() const
Definition: kineticTheoryModel.C:214
Foam::Zero
static constexpr const zero Zero
Definition: zero.H:131
Foam::fv::options::New
static options & New(const fvMesh &mesh)
Definition: fvOptions.C:96
Foam::constant::atomic::alpha
const dimensionedScalar alpha
Definition: readThermalProperties.H:212
K4
#define K4
Definition: SHA1.C:146
Foam::read
bool read(const char *buf, int32_t &val)
Definition: int32.H:125
Foam::phaseCompressibleTurbulenceModel
ThermalDiffusivity< PhaseCompressibleTurbulenceModel< phaseModel > > phaseCompressibleTurbulenceModel
Typedef for phaseCompressibleTurbulenceModel.
Definition: phaseCompressibleTurbulenceModel.H:41
Foam::RASModels::kineticTheoryModel::pPrimef
virtual tmp< surfaceScalarField > pPrimef() const
Definition: kineticTheoryModel.C:299
Foam::fvc::div
tmp< GeometricField< Type, fvPatchField, volMesh > > div(const GeometricField< Type, fvsPatchField, surfaceMesh > &ssf)
Definition: fvcDiv.C:42
kineticTheoryModel.H
Foam::endl
Ostream & endl(Ostream &os)
Definition: Ostream.H:381
fluid
twoPhaseSystem & fluid
Definition: setRegionFluidFields.H:3
Foam::dev2
dimensionedSymmTensor dev2(const dimensionedSymmTensor &dt)
Definition: dimensionedSymmTensor.C:110
K3
#define K3
Definition: SHA1.C:145
Foam::min
label min(const labelHashSet &set, label minValue=labelMax)
Definition: hashSets.C:26
forAll
#define forAll(list, i)
Definition: stdFoam.H:349
Foam::magSqr
dimensioned< typename typeOfMag< Type >::type > magSqr(const dimensioned< Type > &dt)
NotImplemented
#define NotImplemented
Definition: error.H:553
Foam::fvm::SuSp
tmp< fvMatrix< Type > > SuSp(const volScalarField::Internal &, const GeometricField< Type, fvPatchField, volMesh > &)
Foam::fvScalarMatrix
fvMatrix< scalar > fvScalarMatrix
Definition: fvMatricesFwd.H:38
Foam::fvm::Sp
tmp< fvMatrix< Type > > Sp(const volScalarField::Internal &, const GeometricField< Type, fvPatchField, volMesh > &)
fvOptions
fv::options & fvOptions
Definition: setRegionFluidFields.H:23
Foam::volSymmTensorField
GeometricField< symmTensor, fvPatchField, volMesh > volSymmTensorField
Definition: volFieldsFwd.H:61
Foam::Info
messageStream Info
Foam::fvm::laplacian
tmp< fvMatrix< Type > > laplacian(const GeometricField< Type, fvPatchField, volMesh > &vf, const word &name)
Definition: fvmLaplacian.C:41
Foam::SymmTensor< scalar >::I
static const SymmTensor I
Definition: SymmTensor.H:74
rho
rho
Definition: readInitialConditions.H:88
Foam::T
void T(FieldField< Field, Type > &f1, const FieldField< Field, Type > &f2)
Definition: FieldFieldFunctions.C:51
beta
dimensionedScalar beta("beta", dimless/dimTemperature, laminarTransport)
Foam::dimensionedScalar
dimensioned< scalar > dimensionedScalar
Dimensioned scalar obtained from generic dimensioned type.
Definition: dimensionedScalarFwd.H:36
Foam::RASModels::kineticTheoryModel::correct
virtual void correct()
Definition: kineticTheoryModel.C:357
phi
surfaceScalarField & phi
Definition: setRegionFluidFields.H:8
Foam::volScalarField
GeometricField< scalar, fvPatchField, volMesh > volScalarField
Definition: volFieldsFwd.H:53
Foam::max
label max(const labelHashSet &set, label maxValue=labelMin)
Definition: hashSets.C:40
K2
#define K2
Definition: SHA1.C:144
timeName
word timeName
Definition: getTimeIndex.H:3
Foam::dimViscosity
const dimensionSet dimViscosity
mesh
dynamicFvMesh & mesh
Definition: createDynamicFvMesh.H:6
Foam::fvc::interpolate
static tmp< GeometricField< Type, fvsPatchField, surfaceMesh > > interpolate(const GeometricField< Type, fvPatchField, volMesh > &tvf, const surfaceScalarField &faceFlux, Istream &schemeData)
Foam::RASModels::kineticTheoryModel::epsilon
virtual tmp< volScalarField > epsilon() const
Definition: kineticTheoryModel.C:222
Foam::RASModels::kineticTheoryModel::pPrime
virtual tmp< volScalarField > pPrime() const
Definition: kineticTheoryModel.C:260
Foam::New
tmp< DimensionedField< TypeR, GeoMesh > > New(const tmp< DimensionedField< TypeR, GeoMesh >> &tdf1, const word &name, const dimensionSet &dimensions)
Definition: DimensionedFieldReuseFunctions.H:100
Foam::volVectorField
GeometricField< vector, fvPatchField, volMesh > volVectorField
Definition: volFieldsFwd.H:58
U
U
Definition: pEqn.H:72
Foam::RASModels::kineticTheoryModel::devRhoReff
virtual tmp< volSymmTensorField > devRhoReff() const
Definition: kineticTheoryModel.C:306
Foam::RASModels::kineticTheoryModel::~kineticTheoryModel
virtual ~kineticTheoryModel()
Definition: kineticTheoryModel.C:179
Foam::fvm::ddt
tmp< fvMatrix< Type > > ddt(const GeometricField< Type, fvPatchField, volMesh > &vf)
Definition: fvmDdt.C:41
Foam::sqr
dimensionedSymmTensor sqr(const dimensionedVector &dv)
Definition: dimensionedSymmTensor.C:44
Foam::compressible::RASModel
RASModel< EddyDiffusivity< turbulenceModel > > RASModel
Definition: turbulentFluidThermoModel.H:62
Foam::constant::mathematical::pi
constexpr scalar pi(M_PI)
Foam::nl
constexpr char nl
Definition: Ostream.H:424
Foam::surfaceScalarField
GeometricField< scalar, fvsPatchField, surfaceMesh > surfaceScalarField
Definition: surfaceFieldsFwd.H:50
Foam::sqrt
dimensionedScalar sqrt(const dimensionedScalar &ds)
Definition: dimensionedScalar.C:137
Foam::type
fileName::Type type(const fileName &name, const bool followLink=true)
Definition: POSIX.C:717
bool
bool
Definition: EEqn.H:20
D
const dimensionedScalar & D
Definition: solveBulkSurfactant.H:4
Foam::RASModel< EddyDiffusivity< phaseCompressibleTurbulenceModel > >::printCoeffs
virtual void printCoeffs(const word &type)
Definition: RASModel.C:27
Foam::roots::type
type
Definition: Roots.H:52
Foam::PtrListOps::get
List< ReturnType > get(const UPtrList< T > &list, const AccessOp &aop)
Foam::name
word name(const expressions::valueTypeCode typeCode)
Definition: exprTraits.C:52
Foam::RASModels::kineticTheoryModel::omega
virtual tmp< volScalarField > omega() const
Definition: kineticTheoryModel.C:230
Foam::fvc::ddt
tmp< GeometricField< Type, fvPatchField, volMesh > > ddt(const dimensioned< Type > dt, const fvMesh &mesh)
Definition: fvcDdt.C:40
Foam::tr
dimensionedScalar tr(const dimensionedSphericalTensor &dt)
Definition: dimensionedSphericalTensor.C:44
Foam::IOobject::groupName
static word groupName(StringType base, const word &group)
coupled
bool coupled(solutionDict.getOrDefault("coupledEnergyField", false))
Foam::fvc::Sp
tmp< GeometricField< Type, fvPatchField, volMesh > > Sp(const volScalarField &sp, const GeometricField< Type, fvPatchField, volMesh > &vf)
Definition: fvcSup.C:62
Foam::RASModels::kineticTheoryModel::R
virtual tmp< volSymmTensorField > R() const
Definition: kineticTheoryModel.C:238
Foam::RASModels::kineticTheoryModel::divDevRhoReff
virtual tmp< fvVectorMatrix > divDevRhoReff(volVectorField &U) const
Definition: kineticTheoryModel.C:340
Foam::IOobject::NO_READ
@ NO_READ
Definition: IOobject.H:184
Foam::fvm::div
tmp< fvMatrix< Type > > div(const surfaceScalarField &flux, const GeometricField< Type, fvPatchField, volMesh > &vf, const word &name)
Definition: fvmDiv.C:41
Foam::twoSymm
dimensionedSymmTensor twoSymm(const dimensionedSymmTensor &dt)
Definition: dimensionedSymmTensor.C:88
Foam::I
static const Identity< scalar > I
Definition: Identity.H:89
Foam::dimless
const dimensionSet dimless
Definition: dimensionSets.C:182
Foam::dev
dimensionedSymmTensor dev(const dimensionedSymmTensor &dt)
Definition: dimensionedSymmTensor.C:99