Public Member Functions | List of all members
uniform Class Reference

Particle-size distribution model wherein random samples are drawn from the doubly-truncated uniform probability density function: More...

Inheritance diagram for uniform:
Inheritance graph
[legend]
Collaboration diagram for uniform:
Collaboration graph
[legend]

Public Member Functions

 TypeName ("uniform")
 
 uniform (const dictionary &dict, Random &rndGen)
 
 uniform (const uniform &p)
 
virtual autoPtr< distributionModelclone () const
 
void operator= (const uniform &)=delete
 
virtual ~uniform ()=default
 
virtual scalar sample () const
 
virtual scalar meanValue () const
 
- Public Member Functions inherited from distributionModel
 TypeName ("distributionModel")
 
 declareRunTimeSelectionTable (autoPtr, distributionModel, dictionary,(const dictionary &dict, Random &rndGen),(dict, rndGen))
 
 distributionModel (const word &name, const dictionary &dict, Random &rndGen)
 
 distributionModel (const distributionModel &p)
 
virtual ~distributionModel ()=default
 
virtual scalar minValue () const
 
virtual scalar maxValue () const
 

Additional Inherited Members

- Static Public Member Functions inherited from distributionModel
static autoPtr< distributionModelNew (const dictionary &dict, Random &rndGen)
 
- Protected Member Functions inherited from distributionModel
virtual void check () const
 
- Protected Attributes inherited from distributionModel
const dictionary distributionModelDict_
 
RandomrndGen_
 
scalar minValue_
 
scalar maxValue_
 

Detailed Description

Particle-size distribution model wherein random samples are drawn from the doubly-truncated uniform probability density function:

\[ f(x; A, B) = \frac{1}{B - A} \]

where

$ f(x; A, B) $ = Doubly-truncated uniform distribution
$ x $ = Sample
$ A $ = Minimum of the distribution
$ B $ = Maximum of the distribution

Constraints:

Random samples are generated by the inverse transform sampling technique by using the quantile function of the uniform probability density function:

\[ x = u \, (B - A) + A \]

where $ u $ is sample drawn from the uniform probability density function on the unit interval $ (0, 1) $.

Usage
Minimal example by using constant/<CloudProperties>:
subModels
{
    injectionModels
    {
        <name>
        {
            ...

            sizeDistribution
            {
                type        uniform;
                uniformDistribution
                {
                    minValue  <min>;
                    maxValue  <max>;
                }
            }
        }
    }
}

where the entries mean:

Property Description Type Reqd Deflt
type Type name: uniform word yes -
uniformDistribution Distribution settings dict yes -
minValue Minimum of the distribution scalar yes -
maxValue Maximum of the distribution scalar yes -
Source files

Definition at line 157 of file uniform.H.

Constructor & Destructor Documentation

◆ uniform() [1/2]

uniform ( const dictionary dict,
Random rndGen 
)

Definition at line 39 of file uniform.C.

References Foam::check().

Referenced by uniform::clone().

Here is the call graph for this function:
Here is the caller graph for this function:

◆ uniform() [2/2]

uniform ( const uniform p)

Definition at line 50 of file uniform.C.

◆ ~uniform()

virtual ~uniform ( )
virtualdefault

Member Function Documentation

◆ TypeName()

TypeName ( "uniform"  )

◆ clone()

virtual autoPtr<distributionModel> clone ( ) const
inlinevirtual

Implements distributionModel.

Definition at line 176 of file uniform.H.

References uniform::uniform().

Here is the call graph for this function:

◆ operator=()

void operator= ( const uniform )
delete

◆ sample()

Foam::scalar sample ( ) const
virtual

Implements distributionModel.

Definition at line 58 of file uniform.C.

◆ meanValue()

Foam::scalar meanValue ( ) const
virtual

Implements distributionModel.

Definition at line 64 of file uniform.C.


The documentation for this class was generated from the following files: