Particle-size distribution model wherein random samples are drawn from a given arbitrary probability density function or cumulative distribution function. Input distributions are specified as pairs of (size, probability) (i.e. (point, value) ).
More...
|
| TypeName ("general") |
|
| general (const dictionary &dict, Random &rndGen) |
|
| general (const UList< scalar > &sampleData, const scalar binWidth, Random &rndGen) |
|
| general (const general &p) |
|
virtual autoPtr< distributionModel > | clone () const |
|
void | operator= (const general &)=delete |
|
virtual | ~general ()=default |
|
virtual tmp< scalarField > | x () const |
|
virtual tmp< scalarField > | y () const |
|
virtual scalar | sample () const |
|
virtual scalar | meanValue () const |
|
virtual void | writeData (Ostream &os) const |
|
virtual void | readData (Istream &os) |
|
virtual dictionary | writeDict (const word &dictName) const |
|
virtual void | readDict (const dictionary &dict) |
|
| TypeName ("distributionModel") |
|
| declareRunTimeSelectionTable (autoPtr, distributionModel, dictionary,(const dictionary &dict, Random &rndGen),(dict, rndGen)) |
|
| distributionModel (const word &name, const dictionary &dict, Random &rndGen) |
|
| distributionModel (const distributionModel &p) |
|
virtual | ~distributionModel ()=default |
|
virtual scalar | minValue () const |
|
virtual scalar | maxValue () const |
|
Particle-size distribution model wherein random samples are drawn from a given arbitrary probability density function or cumulative distribution function. Input distributions are specified as pairs of (size, probability) (i.e. (point, value) ).
- Usage
- Minimal example by using
constant/<CloudProperties>
: subModels
{
injectionModels
{
<name>
{
...
sizeDistribution
{
type general;
generalDistribution
{
cumulative false;
distribution
(
(<size1> <probability1>)
(<size2> <probability2>)
...
(<sizeN> <probabilityN>)
);
}
}
}
}
}
where the entries mean:
Property | Description | Type | Reqd | Deflt |
type | Type name: general | word | yes | - |
generalDistribution | Distribution settings | dict | yes | - |
distribution | <size>-<probability> pairs | dict | yes | - |
<size> | Particle size | scalar | yes | - |
<probability> | Volume fraction/probability | scalar | yes | - |
cumulative | Flag to determine if input distribution is specified as cumulative or as density | bool | no | false |
- Note
- An example for a pair within
distribution
subdictionary can be given as follows: "(1e-07 1.3)" means 1.3% of particles are modelled with a particle diameter of "1e-7" [m], and so on.
- Variation between input pairs is assumed to be linear.
- Elements in the second column (i.e. probability) are normalised.
- Elements in the second column for cumulative distribution functions must start from zero and must be non-decreasing (i.e. monotonic).
- Elements in the first column (i.e. size) must be specified in an ascending order.
- Input pairs cannot contain any negative element.
- Source files
-
Definition at line 169 of file general.H.