Go to the documentation of this file.
8 mesh.divScheme(
"div(phi,Yi_h)")
40 YiEqn.solve(
mesh.solver(
"Yi"));
91 Info<<
"min/max(T) = "
autoPtr< BasicCompressibleTurbulenceModel > New(const volScalarField &rho, const volVectorField &U, const surfaceScalarField &phi, const typename BasicCompressibleTurbulenceModel::transportModel &transport, const word &propertiesName)
Info<< "Creating field dpdt\n"<< endl;volScalarField dpdt(IOobject("dpdt", runTime.timeName(), mesh), mesh, dimensionedScalar("dpdt", p.dimensions()/dimTime, 0));Info<< "Creating field kinetic energy K\n"<< endl;volScalarField K("K", 0.5 *magSqr(U));volScalarField p_rgh(IOobject("p_rgh", runTime.timeName(), mesh, IOobject::MUST_READ, IOobject::AUTO_WRITE), mesh);p_rgh=p - rho *gh;mesh.setFluxRequired(p_rgh.name());multivariateSurfaceInterpolationScheme< scalar >::fieldTable fields
const word inertSpecie(thermo.lookup("inertSpecie"))
tmp< surfaceScalarField > interpolate(const RhoType &rho)
Basic thermodynamics type based on the use of fitting functions for cp, h, s obtained from the templa...
tmp< GeometricField< Type, fvPatchField, volMesh > > div(const GeometricField< Type, fvsPatchField, surfaceMesh > &ssf)
Ostream & endl(Ostream &os)
Add newline and flush stream.
const Type & value() const
Return const reference to value.
CGAL::Exact_predicates_exact_constructions_kernel K
tmp< GeometricField< Type, fvPatchField, volMesh > > laplacian(const GeometricField< Type, fvPatchField, volMesh > &vf, const word &name)
intWM_LABEL_SIZE_t label
A label is an int32_t or int64_t as specified by the pre-processor macro WM_LABEL_SIZE.
fvMatrix< scalar > fvScalarMatrix
autoPtr< compressible::turbulenceModel > turbulence
volScalarField Yt(0.0 *Y[0])
tmp< fv::convectionScheme< scalar > > mvConvection(fv::convectionScheme< scalar >::New(mesh, fields, phi, mesh.divScheme("div(phi,Yi_h)")))
GeometricField< scalar, fvPatchField, volMesh > volScalarField
autoPtr< radiation::radiationModel > radiation(radiation::radiationModel::New(T))
filmModelType & surfaceFilm
Info<< "Creating combustion model\n"<< endl;autoPtr< combustionModels::psiCombustionModel > combustion(combustionModels::psiCombustionModel::New(mesh))
tmp< GeometricField< Type, fvPatchField, volMesh > > ddt(const dimensioned< Type > dt, const fvMesh &mesh)
dimensioned< Type > min(const dimensioned< Type > &, const dimensioned< Type > &)
word name(const complex &)
Return a string representation of a complex.
tmp< surfaceScalarField > absolute(const tmp< surfaceScalarField > &tphi, const volVectorField &U)
Return the given relative flux in absolute form.
fvScalarMatrix EEqn(fvm::ddt(rho, he)+mvConvection->fvmDiv(phi, he)+fvc::ddt(rho, K)+fvc::div(phi, K)+(he.name()=="e" ? fvc::div(fvc::absolute(phi/fvc::interpolate(rho), U), p, "div(phiv,p)") :-dpdt) - fvm::laplacian(turbulence->alphaEff(), he)==combustion->Sh()+radiation->Sh(thermo)+parcels.Sh(he)+surfaceFilm.Sh()+fvOptions(rho, he))