Go to the documentation of this file.
8 mesh.divScheme(
"div(phi,ft_b_ha_hau)")
44 (bc*mgb)().weightedAverage(
mesh.V())
45 /(bc.weightedAverage(
mesh.V()) + SMALL);
53 nfVec /= (
mag(nfVec) + dMgb);
101 Info<<
"Combustion progress = "
102 << 100*(1.0 -
b)().weightedAverage(
mesh.V()*ft).value() <<
"%"
107 Info<<
"Combustion progress = "
108 << 100*(1.0 -
b)().weightedAverage(
mesh.V()).value() <<
"%"
tmp< GeometricField< typename outerProduct< vector, Type >::type, fvPatchField, volMesh >> reconstruct(const GeometricField< Type, fvsPatchField, surfaceMesh > &ssf)
tmp< GeometricField< Type, fvsPatchField, surfaceMesh > > snGrad(const GeometricField< Type, fvPatchField, volMesh > &vf, const word &name)
autoPtr< BasicCompressibleTurbulenceModel > New(const volScalarField &rho, const volVectorField &U, const surfaceScalarField &phi, const typename BasicCompressibleTurbulenceModel::transportModel &transport, const word &propertiesName)
Info<< "Creating field dpdt\n"<< endl;volScalarField dpdt(IOobject("dpdt", runTime.timeName(), mesh), mesh, dimensionedScalar("dpdt", p.dimensions()/dimTime, 0));Info<< "Creating field kinetic energy K\n"<< endl;volScalarField K("K", 0.5 *magSqr(U));volScalarField p_rgh(IOobject("p_rgh", runTime.timeName(), mesh, IOobject::MUST_READ, IOobject::AUTO_WRITE), mesh);p_rgh=p - rho *gh;mesh.setFluxRequired(p_rgh.name());multivariateSurfaceInterpolationScheme< scalar >::fieldTable fields
tmp< surfaceScalarField > interpolate(const RhoType &rho)
Basic thermodynamics type based on the use of fitting functions for cp, h, s obtained from the templa...
tmp< fv::convectionScheme< scalar > > mvConvection(fv::convectionScheme< scalar >::New(mesh, fields, phi, mesh.divScheme("div(phi,ft_b_ha_hau)")))
tmp< GeometricField< Type, fvPatchField, volMesh > > div(const GeometricField< Type, fvsPatchField, surfaceMesh > &ssf)
Ostream & endl(Ostream &os)
Add newline and flush stream.
const Type & value() const
Return const reference to value.
Calculates and outputs the mean and maximum Courant Numbers.
dimensioned< scalar > mag(const dimensioned< Type > &)
tmp< GeometricField< Type, fvPatchField, volMesh > > laplacian(const GeometricField< Type, fvPatchField, volMesh > &vf, const word &name)
fvMatrix< scalar > fvScalarMatrix
const dimensionedScalar b
Wien displacement law constant: default SI units: [m.K].
tmp< GeometricField< Type, fvPatchField, volMesh > > Su(const GeometricField< Type, fvPatchField, volMesh > &su, const GeometricField< Type, fvPatchField, volMesh > &vf)
autoPtr< compressible::turbulenceModel > turbulence
dimensioned< scalar > dimensionedScalar
Dimensioned scalar obtained from generic dimensioned type.
GeometricField< scalar, fvPatchField, volMesh > volScalarField
volScalarField Db("Db", turbulence->muEff())
autoPtr< XiModel > flameWrinkling
Create the flame-wrinkling model.
GeometricField< vector, fvPatchField, volMesh > volVectorField
dimensionedScalar StCorr("StCorr", dimless, 1.0)
Info<< "Creating field dpdt\n"<< endl;volScalarField dpdt(IOobject("dpdt", runTime.timeName(), mesh), mesh, dimensionedScalar("dpdt", p.dimensions()/dimTime, 0));Info<< "Creating field kinetic energy K\n"<< endl;volScalarField K("K", 0.5 *magSqr(U));Info<< "Creating the unstrained laminar flame speed\n"<< endl;autoPtr< laminarFlameSpeed > unstrainedLaminarFlameSpeed(laminarFlameSpeed::New(thermo))
GeometricField< scalar, fvsPatchField, surfaceMesh > surfaceScalarField
basicMultiComponentMixture & composition
const volScalarField & betav
const dimensionedScalar c
Speed of light in a vacuum.
tmp< GeometricField< Type, fvPatchField, volMesh > > ddt(const dimensioned< Type > dt, const fvMesh &mesh)
tmp< GeometricField< Type, fvPatchField, volMesh > > Sp(const volScalarField &sp, const GeometricField< Type, fvPatchField, volMesh > &vf)
GeometricField< vector, fvsPatchField, surfaceMesh > surfaceVectorField
dimensioned< Type > min(const dimensioned< Type > &, const dimensioned< Type > &)